Lack of phosphatidylethanolamine N-methyltransferase alters plasma VLDL phospholipids and attenuates atherosclerosis in mice.
نویسندگان
چکیده
OBJECTIVE Impaired hepatic phosphatidylcholine (PC) synthesis lowers plasma lipids. We, therefore, tested the hypothesis that lack of phosphatidylethanolamine N-methyltransferase (PEMT), a hepatic enzyme catalyzing PC biosynthesis, attenuates the development of atherosclerosis. METHODS AND RESULTS Mice deficient in both PEMT and low-density lipoprotein receptors (Pemt(-/-)/Ldlr(-/-) mice) were fed a high-fat/high-cholesterol diet for 16 weeks. Atherosclerotic lesion area was approximately 80% lower (P<0.01) in Pemt(-/-)/Ldlr(-/-) mice than in Pemt(+/+)/Ldlr(-/-) mice, consistent with the atheroprotective plasma lipoprotein profile (ie, significant reduction in very low-density lipoprotein [VLDL]/intermediate-density lipoprotein/low-density lipoprotein-associated phospholipids [approximately 45%], triacylglycerols [approximately 65%], cholesterol [approximately 58%], and cholesteryl esters [approximately 68%]). Plasma apoB was decreased by 40% to 60%, whereas high-density lipoprotein levels were not altered. In addition, PEMT deficiency reduced plasma homocysteine by 34% to 52% in Pemt(-/-)/Ldlr(-/-) mice. The molar ratio of PC/phosphatidylethanolamine in nascent VLDLs produced by Pemt(-/-)/Ldlr(-/-) mice was lower than in VLDLs in Pemt(+/+)/Ldlr(-/-) mice. Furthermore, deletion of PEMT modestly reduced hepatic VLDL secretion in Ldlr(-/-) mice and altered the rate of VLDL clearance from plasma. CONCLUSIONS This is the first report showing that inhibition of hepatic phospholipid biosynthesis attenuates atherosclerosis.
منابع مشابه
Insulin stimulation of phospholipid methylation in isolated rat adipocyte plasma membranes.
Partially purified plasma membranes prepared from rat adipocytes contain N-methyltransferase(s) that utilize(s) S-adenosyl-L-methionine to synthesize phosphatidylcholine from phosphatidylethanolamine. The incorporation of [3H]methyl from S-adenosyl-L-[methyl-3H]methionine into plasma membrane phospholipids was linear with incubation time and plasma membrane protein concentration and was inhibit...
متن کاملImpaired phosphatidylcholine biosynthesis reduces atherosclerosis and prevents lipotoxic cardiac dysfunction in ApoE-/- Mice.
RATIONALE Phosphatidylcholine (PC) is the predominant phospholipid component of circulating lipoproteins. The majority of PC is formed by the choline pathway. However, approximately one-third of hepatic PC can also be synthesized by phosphatidylethanolamine N-methyltransferase (PEMT). PEMT is required for normal secretion of very-low-density lipoproteins from the liver. We hypothesized that lac...
متن کاملPlasma homocysteine is regulated by phospholipid methylation.
Mild hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Homocysteine, a non-protein amino acid, is formed from S-adenosylhomocysteine and partially secreted into plasma. A potential source for homocysteine is methylation of the lipid phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine N-methyltransferase in the liver. We show that mice that la...
متن کاملTargeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels.
It has been proposed that the plasma phospholipid transfer protein (PLTP) facilitates the transfer of phospholipids and cholesterol from triglyceride-rich lipoproteins (TRL) into high-density lipoproteins (HDL). To evaluate the in vivo role of PLTP in lipoprotein metabolism, we used homologous recombination in embryonic stem cells and produced mice with no PLTP gene expression. Analysis of plas...
متن کاملThe concentration of phosphatidylethanolamine in mitochondria can modulate ATP production and glucose metabolism in mice.
Phosphatidylethanolamine (PE) N-methyltransferase (PEMT) catalyzes the synthesis of phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected against diet-induced obesity and insulin resistance. We investigated the role of PEMT in hepatic carbohydrate metabolism in chow-fed mice. A pyruvate tolerance test revealed that PEMT deficiency greatly attenuated gluconeogenesis. The reducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 29 9 شماره
صفحات -
تاریخ انتشار 2009